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a b s t r a c t

In a regression model for treatment outcome in a randomized clinical trial, a treatment
effect modifier is a covariate that has an interaction with the treatment variable,
implying that the treatment efficacies vary across values of such a covariate. In this
paper, we present a method for determining a composite variable from a set of baseline
covariates, that can have a nonlinear association with the treatment outcome, and acts
as a composite treatment effect modifier. We introduce a parsimonious generalization of
the single-index models that targets the effect of the interaction between the treatment
conditions and the vector of covariates on the outcome, a single-index model with
multiple-links (SIMML) that estimates a single linear combination of the covariates
(i.e., a single-index), with treatment-specific nonparametric link functions. The approach
emphasizes a focus on the treatment-by-covariates interaction effects on the treatment
outcome that are relevant for making optimal treatment decisions. Asymptotic results
for estimator are obtained under possible model misspecification. A treatment decision
rule based on the derived single-index is defined, and it is compared to other methods
for estimating optimal treatment decision rules. An application to a clinical trial for the
treatment of depression is presented.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In precision medicine, a critical concern is to identify baseline measures that have distinct relationships with the
outcome from different treatments so that patient-specific treatment decisions can be made (Murphy, 2003; Robins, 2004).
Such variables are called treatment effect modifiers, and these can be useful in determining a treatment decision rule that
will select a treatment for a patient based on observations made at baseline. There is a growing need to extract treatment
effect modifiers from (usually noisy) baseline patient data that, more and more commonly, consist of a large number of
clinical and biological characteristics.

Typically, treatment effect modifiers (or, ‘‘moderators’’) are identified either one by one, using one model for each
potential predictor, or from a large model which includes all potential predictors and their (two-way) interactions with
treatment, and then testing for significance of the interaction terms, almost exclusively using linear models. In the
linear model context, Petkova et al. (2016) proposed a model using a linear combination (i.e., an index) of patients’
characteristics, termed a generated effect modifier (GEM) constructed to optimize the interaction with a treatment
indicator. Such a composite variable approach is especially appealing for complex diseases such as psychiatric diseases, in
which each baseline characteristic may only have a small treatment modifying effect. In such settings, it is not common
to find variables that are individually strong moderators of treatment effects.
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Here we present novel flexible methods for determining composite variables that permit non-linear association with
the outcome. In particular, the proposed methods allow the conditional expectation of the outcomes to have a flexible
treatment-specific link function with an index. We define the index to be a one-dimensional linear combination of the
covariates. This approach is related to single-index models (Brillinger, 1982; Stoker, 1986; Powell et al., 1989; Hardle et al.,
1993; Xia and Li, 1999; Horowitz, 2009; Antoniadis et al., 2004), as well as to single-index model generalizations such as
projection pursuit regression (Friedman and Stuetzle, 1981) andmultiple-indexmodels (Xia, 2008; Yuan, 2011). We employ
a single projection of the covariates (i.e., an index) to summarize the variability of the baseline covariates, and multiple
link functions to connect the derived single-index to the treatment-specific mean responses; we call these single-index
models with multiple-links (SIMML). This single-index model with multiple-links provides a parsimonious extension of the
single-index model in modeling the effect of the interaction between a categorical treatment variable and a vector-valued
covariate. The dependence of treatment-specific outcomes on a common single-index improves the interpretability, and
helps in determining treatment decision rules. This approach generalizes the notion of a composite ‘‘treatment effect
modifier’’ from the linear model setting, to a nonparametric context, to define a nonparametric generated effect modifier.

2. A single-index model with multiple-links (SIMML)

Let X = (x1, . . . , xp)⊤ ∈ Rp denote the set of covariates. Let T denote the categorical (treatment assignment) variable of
interest, taking values in {1, . . . , K } with nonzero probabilities (π1, . . . πK ) that sum to one. Let Y ∈ R denote an outcome
variable; without loss of generality, we assume that a higher value of Y is preferred. We focus on data arising from a
randomized experiment, however, the method can be extended to observational studies.

A common approach to interrogate the effect of the interaction between X and the treatment indicator T on an outcome
is to fit a regression model separately for each of the K treatment groups, as functions of X . For instance, a single-index
model can be fitted separately for each treatment group t , resulting in K indices, β⊤

t X , t ∈ {1, . . . , K }. We refer to this as
a K -index model; it has the form

E (Y | T = t, X = x) = gt (β⊤

t x) (t = 1, . . . , K ), (1)

where both the treatment-specific nonparametric link functions gt (·), and the treatment-specific index vectors βt ∈ Rp,
need to be estimated for each group t . (The vectors βt need to satisfy some identifiability condition (Lin and Kulasekera,
2007).) While this is a reasonable approach, the K indices of model (1) lack useful interpretation as effect modifiers and
often lead to over-parametrization.

For parsimony and insight, the SIMML constrains the βt in (1) to be equal, and it requires separate nonparametrically
defined curves for each treatment t as a function of a single index α⊤X common for all t:

E (Y | T = t, X = x) = gt (α⊤x) (t = 1, . . . , K ), (2)

where both the links gt and the vector α need to be estimated. The SIMML (2) provides a single parsimonious biosignature,
α⊤X ∈ R. Due to the nonparametric nature of gt , the scale of α is not identifiable in (2) and to address this we restrict α
to be in Θ = {α = (α1, . . . , αp)⊤|

∑p
j=1 α2

j = 1, αp > 0}, i.e., to be in the upper hemisphere of the unit sphere.
If the true model for the treatment-specific outcome Yt is not a SIMML, then the SIMML can be regarded as the L2

projection of the treatment specific mean outcome mt (X) = E(Yt | X) on the single index u = α⊤X ,

gt (u) = E(mt (X) | α⊤X = u) (t = 1, . . . , K ), (3)

for each given α. Specifically, suppose the true treatment-specific model can be expressed as

Yt = mt (X) + σt (X)ϵ (t = 1, . . . , K ), (4)

in which E(ϵ | X) = 0, E(ϵ2
| X) = 1. Let R(α) =

∑K
t=1 πtE

(
Yt − gt (α⊤X)

)2, where gt is defined in (3) and let

α0 := argmin
α∈Θ

R(α). (5)

Then α0 can be shown to be the minimizer of the cross-entropy (e.g., Mackay, 2003) between the SIMML (2) and
the general model (4) under the Gaussian noise assumption. Here, the cross-entropy of an arbitrary distribution with
probability density f , with respect to another reference distribution P is defined as EP (− log f ), where the expectation
is take with respect to the distribution P . Model (3) evaluated at α0 can be viewed as the ‘‘projection’’ (in the sense of
the closest point) of the true distribution P (4) onto the space Θ of the SIMML distribution, using the Kullback–Leibler
divergence as a distance measure.

The SIMML (2) allows a visualization useful for characterizing differential treatment effects, varying with the single-
index α⊤X . As X ∈ Rp varies, the mean response of model (2) changes only in the specific direction α ∈ Θ , and the effect
of varying X , described by the link functions gt , is different for each treatment condition t ∈ {1, . . . , K }. Therefore, the
single-index can be viewed as a useful biosignature for describing differential treatment effects, provided that gt ̸= gt ′
for at least one pair t, t ′ ∈ {1, . . . , K }.
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3. Estimation

While any smoothing technique can be used to approximate the unspecified smooth links gt (·) in (2), in this
paper, we will focus on cubic B-splines. Specifically, gt (u) ≈ η⊤

t Zt (u), for some coefficients ηt ∈ Rdt . Here, Zt (u) =[
B1(u), . . . , Bdt (u)

]⊤
∈ Rdt consists of a set of dt normalized cubic B-spline basis functions (de Boor, 2001). Let nt

be the sample size for the tth treatment group and n =
∑K

t=1 nt denote the total sample size. Note, dt depends on nt
(see Assumption 5 and Wang and Yang, 2009). For a given α, let Zα,t denote the B-spline evaluation matrix (nt × dt ), so
that the ith row is Zt (α⊤Xti)⊤, which is the B-spline evaluation of the ith individual from the tth treatment group. The
subscript α in the matrix Zα,t highlights its dependence on α. Without loss of generality we assume that the outcome
and the covariates are all centered at zero for each treatment group t , so that the model does not involve any intercept
terms.

For sample data, SIMML (2) can be represented by[
Y

]
n×1 =

[
Zα

]
n×(

∑K
t=1 dt )

[
η
]
(
∑K

t=1 dt )×1 +
[
ϵ
]
n×1 , (6)

where Y =
[
Y⊤

1 , . . . ,Y⊤

K

]⊤
is the observed response vector with Y t ∈ Rnt , Zα is n × (

∑K
t=1 dt ) block-diagonal B-spline

design matrix of the Zα,t ’s, η =
[
η⊤

1 , . . . , η⊤

K

]⊤ is the B-spline coefficient vector, and ϵ =
[
ϵ⊤

1 , . . . , ϵ⊤

K

]⊤ is a mean zero
noise vector with covariance matrix σ 2In.

For a given α, we define the n×n single-index projection matrix to be Sα = Zα

(
ZT

αZα

)−1 ZT
α. Assuming Gaussian noise

and treating η as a nuisance parameter, the negative ‘‘profile’’ loglikelihood of α, up to a constant multiplier, is

Q (α) = ∥Y − SαY∥
2. (7)

We define the profile likelihood estimator of the index parameter α as

α̂ = argmin
α∈Θ

Q (α). (8)

Each link function gt (·) in (2) can be estimated by

ĝt (u) = Zt (u)⊤
(
ZT

α̂,tZα̂,t
)−1

ZT
α̂,tY t (t = 1, . . . , K ), (9)

where Zα̂,t is Zα,t evaluated at α = α̂.
To solve (8), we can perform a procedure that alternates between the following two steps: first, for a fixed α, estimate

each link function gt (·) in (2) by (9), where α̂ is taken at α; second, for a fixed ĝt (u), perform iteratively reweighted least
squares (IRLS) to approximately solve (8) for α. These two steps can be iterated until convergence.

4. Asymptotic theory

In this section, we establish the asymptotic results of the profile estimator α̂ in (8) under possible misspecification,
when the true model is assumed to be (4). Let us denote the pth component of the vector α0 in (5) by α0,p(> 0, since
α0 ∈ Θ). By the completeness property of R, we can always find some c > 0 such that α0,p ≥ c , and therefore, without
loss of generality, we may assume that α0 is in a compact set Θc = {α = (α1, . . . , αp)⊤ ∈ Rp

|
∑p

j=1 α2
j = 1, αp ≥ c}, with

an appropriate choice of small c > 0. Further, to avoid the complication from the restricted parameter space Θc , we can
consider instead the ‘‘pth component removed’’ R(α) in (5), as follows:

R(α−p) = R
(
α1, . . . , αp−1,

√
1 − (α2

1 + · · · + α2
p−1)

)
, (10)

where a vector α−p = (α1, α2, . . . , αp−1) ∈ Rp−1 lives inside the unit ball. Let the ‘‘pth component removed’’ value of α0 in
(5) be denoted by α0,−p ∈ Rp−1. Similarly, let the ‘‘pth component removed’’ value of the corresponding profile estimator
α̂ in (8) be denoted by α̂−p ∈ Rp−1. The following conditions are assumed for the asymptotic results.

Assumption 1. The objective function R(α−p) in (10) is locally convex at α0,−p, and its Hessian function, H(α−p) evaluated
at α−p = α0,−p, is positive definite, with bounded eigenvalues.

Assumption 2. The underlying mean functions mt (X) in (4) are in C (4)(Bp
a), t ∈ {1, . . . , K } for some finite a > 0, where

Bp
a is the p-dimensional ball with center 0 and radius a and C (q)(Bp

a) =
{
f | the qth order partial derivatives of f are

continuous in Bp
a
}
.

Assumption 3. The probability density function of X, fX (x) ∈ C (4)(Bp
a), and there exist constants 0 < cf < Cf such that

cf /Volp(B
p
a) ≤ fX (x) ≤ Cf /Volp(B

p
a), if x ∈ Bp

a , and fX (x) = 0, if x /∈ Bp
a .
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Assumption 4. The underlying noise ϵ in (4) satisfies E(ϵ | X) = 0 with E(ϵ2
| X) = 1, and there exists a constant

Cϵ > 0, such that supx∈Bpa
E(|ϵ|3 | X = x) < Cϵ . For each group t ∈ {1, . . . , K }, the standard deviation function σt (x) is

continuous in Bp
a , with 0 < cσt ≤ infx∈Bpa σt (x) ≤ infx∈Bpa σt (x) ≤ Cσt < ∞, for some constants 0 < cσt < Cσt .

Assumption 5. The number of interior knots, Nt (= dt − 4), in the cubic B-spline approximation of the link function gt (·)
for the tth treatment group satisfies: n1/6

t ≪ Nt ≪ n1/5
t (log(nt ))−(2/5), t ∈ {1, . . . , K }.

The first theorem establishes consistency of the estimator (8) and the second theorem establishes asymptotic normality
of the estimator α̂−p for α0,−p.

Theorem 1 (Consistency). Under Assumptions 1 to 5, α̂ → α0 almost surely, where α0 is defined in (5).

Theorem 2 (Asymptotic Normality). Under Assumptions 1 to 5,
√
n(α̂−p − α0,−p) → N (0,Σα0,−p ) in distribution, with

asymptotic covariance matrix Σα0,−p = H−1
α0,−p

W α0,−pH
−1
α0,−p

, where the matrix Hα0,−p is the Hessian matrix H(α−p) =

∂2

∂α−p∂αT
−p

R(α−p) evaluated at α−p = α0,−p, and the matrix W α0,−p is defined in Appendix.

The proofs of the theorems are given in Appendix.

5. Simulation illustrations

5.1. Performance on estimating treatment decision rules

A treatment decision function, D(X) : Rp
↦→ {1, . . . , K }, mapping a subject’s baseline characteristics X ∈ Rp to one

of K available treatments, defines a treatment decision rule for the single decision time point (Murphy, 2003; Robins,
2004; Zhang et al., 2012; Cai et al., 2011; Qian and Murphy, 2011). Given covariates X , a treatment decision rule based on
SIMML is D(X) = argmaxt∈{1,...,K } gt (α⊤X). We investigate the performance of the estimated treatment decision rules of
the form D(X) = argmaxt∈{1,...,K } E

(
Y | X, T = t

)
, where the conditional expectation is obtained from various modeling

procedures.
In our simulation settings, the baseline covariate vector X = (x1, . . . , xp)⊤ ∼ N (0, ΨX ), with ΨX having 1′s on

the diagonal and 0.1 everywhere else. We consider K = 2 with different noise levels for the two treatment groups:
ϵ1 ∼ N (0, 0.42), ϵ2 ∼ N (0, 0.22). The outcome data are generated under the following fairly broad model

Yt = δM(µ⊤X; ν) + Ct (α⊤X; ω) + ϵt (t = 1, 2). (11)

As a function of the index µ⊤X , M is referred to as the ‘‘main effect’’ of X . As functions of the other index α⊤X , the Ct ’s
are referred to as the ‘‘contrast’’ functions that define the treatment-by-X interaction. Here, we will use the parameters
ν and ω to control the degree of non-linearity of M and Ct ’s, respectively.

An optimal treatment decision rule depends only on the Ct ’s, not on M or the ϵt ’s. The parameter δ in (11) controls the
relative contribution of the ‘‘signal’’ component C ′

t s to the variance in the outcomes, and is calibrated to obtain a relative
contribution of 0.35. The contrast functions Ct ’s in (11) are set to

Ct (u; ω) =

{
C1(u; ω) = +1 − cos

(
0.5πωu

)
+ 0.5(u − ω)

C2(u; ω) = −1 + cos
(
0.5πωu

)
− 0.5(u − ω),

(12)

where, if ω = 0, then the Ct ’s are linear functions; and they are more nonlinear for larger values of ω. We considered three
cases, corresponding to linear (ω = 0), moderately nonlinear (ω = 0.5), and highly nonlinear (ω = 1) Ct ’s, respectively,
illustrated in the first three panels of Fig. 1. We set the main effect function M in (11) to be

M(u; ν) = 0.5u − sin(0.5πνu),

where, as ν increases, the degree of nonlinearity in the main effect function M increases. We considered two cases, ν = 0,
corresponding to a linear M; and ν = 1, corresponding to a nonlinear M , illustrated in the fourth and the fifth panel of
Fig. 1. We set p = 5 and p = 10 with α = (1, . . . , 5)⊤ and α = (1, . . . , 10)⊤, respectively, each standardized to have
norm one. We set µ to be proportional to a vector of 1’s, standardized to have norm one. Two treatment groups were
considered, with equal sample sizes n1 = n2 = 40. We used d1 = d2 = 5 B-spline basis functions to approximate the
link functions. The treatment decision rules were based on the following regression models: (i) SIMML (2) estimated from
maximizing the profile likelihood; (ii) the K -Index model (1) fitted separately for each treatment group by the B-spline
approach of Wang and Yang (2009), denoted as K -Index; (iii) the linear GEM model (Petkova et al., 2016) estimated under
the criterion of maximizing the difference in the treatment-specific slope, denoted as linGEM; and (iv) linear regression
models fitted separately for each treatment group under the least squares criterion, denoted as K -LR. For each scenario,
using the outcome Y from a simulated test set (of size 105), we computed the proportion of correct decisions (PCD) of the
treatment decision rules estimated from each method and the methods were compared in terms of PCD using boxplots
from 200 training datasets.
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Fig. 1. The first panel shows the linear contrast Ct ’s (ω = 0), the second panel the moderately nonlinear contrast Ct ’s (ω = 0.5), and the third panel
displays highly nonlinear contrast Ct ’s (ω = 1). Data points are generated from model (11) with δ = 0 and p = 5. The fourth and the fifth panels
show the linear (ν = 0) and the nonlinear main effect M (ν = 1), respectively.

Fig. 2. Boxplots of the proportion of correct decisions (PCD) of the treatment decision rules obtained from 200 training datasets for each of the four
methods. Each panel corresponds to one of the six combinations of ω ∈ {0, 0.5, 1} and ν ∈ {0, 1}: the shape of the contrast functions Ct ’s controlled
by ω; the shape of the main effect function M controlled by ν; the number of predictors p ∈ {5, 10}. The sample sizes are n1 = n2 = 40.

Fig. 2 shows that SIMML outperforms all other methods, except for the case under the linear M and Ct ’s in which all
4 approaches perform well. The K -Index model is clearly second best, under the linear M (ν = 0) (the top panels) with
the nonlinear Ct ’s (ω = 0.5 and ω = 1). However, with a more complex M function (ν = 1) (the bottom panels), the
performance of the K -index approach is considerably worse compared to SIMML. Given a relatively small sample size and
under the complex main effect, the SIMML that emphasizes the treatment contrasts through the common single-index
is more effective in estimating optimal treatment decisions than the K -Index model. As would be expected, additional
complexity in the contrasts Ct ’s (ω = 0.5 and ω = 1) has a greater effect on the performance of the more restrictive
models (linGEM and K -LR) than it does on the flexible models (SIMML and K -index). The number of covariates, p, also has
a clear impact on the performance of all methods. As p changes from 5 (red) to 10 (blue), the deterioration in performance
is more pronounced for the K -Index model that requires separate fits for each treatment and thus involves estimation
of more parameters (K (p − 1) + Kd), compared to the more parsimonious SIMML with a fewer number of parameters
(p − 1 + Kd) to be estimated.

5.2. Coverage probability of asymptotic 95% confidence intervals

The next simulation experiment assesses the coverage probability of the asymptotic confidence intervals derived from
Theorem 2. The data were generated under model (11) with δ = 0 (i.e., no main effect M) with p = 5 covariates. We set
the SIMML index vector α(= α0) to be stepwise increasing: (1, . . . , 5)⊤, normalized to have unit L2 norm. The associated
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Table 1
Depression randomized clinical trial: Description of the p = 9 baseline covariates (means and SDs); the estimated values (‘‘Indiv. Value’’) of treatment
decision rules from each individual covariate, using either the B-spline regression (‘‘Nonpar.’’, in the third column) or the linear regression (‘‘Linear’’,
in the fourth column); the estimated single-index coefficients (in the last three columns), and the values of the associated treatment decision rules
from the three methods (in the bottom row).
(Label) Baseline Mean Indiv. value Coefficients αj ’s, j ∈ {1, . . . , 9}

Patient characteristics (SD) Nonpar. Linear SIMML* SIMML linGEM

(x1) Age at evaluation 38.00 (13.84) 8.56 8.24 −0.53 −0.50 −0.43
(x2) Severity of depression 18.80 (4.29) 6.85 7.07 −0.07 −0.13 −0.37
(x3) Dur. MDD (month) 38.19 (53.17) 7.42 7.33 0.08 −0.18 0.20
(x4) Age at MDD 16.46 (6.09) 6.29 6.95 0.23 0.05 0.31
(x5) Axis II 3.92 (1.43) 7.16 7.11 0.23 0.20 0.17
(x6) Word Fluency 37.42 (11.68) 7.64 7.11 0.11 0.09 0.27
(x7) Flanker RT 59.51 (26.63) 8.19 8.39 0.12 0.23 −0.18
(x8) Post-conflict adjus. 0.07 (0.12) 6.73 7.23 −0.30 −0.29 −0.18
(x9) Flanker Accuracy 0.22 (0.15) 7.89 8.37 0.70 0.70 0.59
Value from single-index model 9.34 8.72 8.22

contrast functions, Ct ’s, are given by (12). As in Section 5.1, we consider three levels of the curvature of the contrasts,
corresponding to linear (ω = 0), moderately nonlinear (ω = 0.5), and highly nonlinear (ω = 1) contrasts (see Fig. 1). In
(11), the standard deviations of the noise ϵt were set to 0.5. We set the sample size n = n1 + n2 with n1 = n2. With
varying n ∈ {50, 100, 200, 400, 800, 1600, 3200}, the number of interior knots used in the B-spline approximation, Nt ,
was determined to be Nt =

[
n1/5.5
t

]
, as recommended by Wang and Yang (2009) ([v] denotes the integer part of v). Two

hundred datasets were generated for all combinations of n and ω. For each (i.e., the jth) component αj of α, the proportion
of times the 95% asymptotic confidence interval contains the true value of αj was recorded in Table C.2 in Appendix. Notice
that the 5th (i.e., the pth) element is estimated to satisfy the constraint α ∈ Θ in Theorem 2. To obtain the confidence
intervals for the 5th component, we applied Theorem 2 with the 4th component removed (without loss of generality),
and obtained the confidence intervals for the 5th component.

We note that the choice of Nt =
[
n1/5.5
t

]
is an approximation to the Nt of Assumption 5 which requires n1/6

t ≪ Nt ≪

n1/5
t (log(nt ))−(2/5), as such Nt can only be obtained for a very large nt . Nevertheless, in Table C.2 in the Appendix, as the

sample size n(= n1 + n2) increases, the ‘‘actual’’ coverage probability gets closer to the ‘‘nominal’’ coverage probability,
with better coverage results for the linear and the moderately nonlinear contrasts (ω ∈ {0, 0.5}) compared to the highly
nonlinear contrasts (ω = 1).

6. Application to data from a randomized clinical trial

Major depressive disorder afflicts millions and, according to the World Health Organization, it is the leading cause
of disability worldwide. It is a highly heterogeneous disorder, however, no individual biological or clinical marker has
demonstrated sufficient ability to match individuals to efficacious treatment. Here we illustrate the utility of the proposed
SIMML method for estimating a composite biomarker and treatment decision rules, with an application to data from a
randomized clinical trial comparing an antidepressant and placebo for treating depression.

Of the 166 subjects, 88 were randomized to placebo and 78 to the antidepressant. In addition to standard clinical
assessments, patients underwent neuropsychiatric testing prior to treatments. Table 1 summarizes the information on
p = 9 baseline patient characteristics, X = (x1, . . . , x9)⊤. These baseline covariates were considered as potential treatment
effect modifiers, and standardized to have unit variance. The treatment outcome Y was the improvement in symptom
severity from week 0 (baseline) to week 8 and thus larger values of the outcome were better.

Fig. 3 shows the treatment outcomes Y against each of the 9 baseline covariates, for the placebo group (blue) and the
active drug group (red). The estimated B-spline approximated curves for each individual covariate are shown with the
associated 95% confidence bands: the solid blue curves for the placebo group and the dotted red curves for the active
drug group. In Fig. 3, each individual covariate has at most a small treatment modifying effect, as its treatment-specific
curves do not differ much.

One natural measure for the effectiveness of a treatment decision rule D is called the ‘‘value’’ (V ) of a treatment decision
rule D (Qian and Murphy, 2011), which is defined as the expected mean outcome if everyone in the population receives
treatment according to that rule:

V(D) = EX
(
EY |X

(
Y | X, T = D(X)

))
. (13)

In the third and the fourth column of Table 1, ‘‘Indiv. Value’’ refers to the estimated ‘‘value’’ of a decision rule D estimated
from each of the 9 individual covariates, using the following two approaches for estimating D: the B-spline regressions
of the treatment-specific outcome on each individual covariate (‘‘Nonpar.’’ in the third column of Table 1) as suggested
by the overlaid curves in Fig. 3, and the linear regressions of the treatment-specific outcome on each individual covariate
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Fig. 3. Depression randomized clinical trial: For each of the 9 baseline covariates individually, treatment-specific spline approximated regression
curves with 5 basis functions are overlaid on to the data points; the placebo group is the blue solid curve and the active drug group is the red
dotted curve. The associated 95% confidence bands of the regression curves were also plotted.

(‘‘Linear’’ in the fourth column of Table 1). The value (13) of D can be estimated by the inverse probability weighted
estimator (Murphy, 2005):

V̂ (D) =

ñ∑
i=1

YiITi=D(Xi)/

ñ∑
i=1

ITi=D(Xi), (14)

using a testing set, say, {(Yi, Xi, Ti), i = 1, . . . , ñ}, where, if one uses only the jth covariate for estimating D, then Xi = xij.
The data were randomly split into a training set and a testing set with a ratio of 10 to 1. This splitting was performed
500 times, each time estimating D on the training set and computing (14) from the testing set. Values (14) are averaged
over the 500 splits.

The SIMML can be made more efficient by incorporating a main effect component β⊤D(X) in the model, i.e., we
can consider E (Y | T = t, X = x) = βTD(x) + gt (α⊤x), for an appropriate vector-valued function D(X). If the n × q
matrix D denotes the evaluation of D(X) on the sample data, then for each α, the negative ‘‘profile’’ loglikelihood
(7) under this extended model (with Gaussian outcome), up to constants, is Q ∗(α) = ∥Ỹ − SαỸ∥

2, where Ỹ =(
In − (In − Sα)D

(
DTD

)−1 DT
)
Y . In this analysis, we took D(X) = X . We refer to this approach as ‘‘main effect adjusted’’

profile likelihood SIMML and denote it by SIMML*.
In Table 1, the last three columns show the estimated single-index coefficients α obtained by two different SIMMLs

(SIMML* and SIMML) and the linear GEM (linGEM) which restricts the link gt (·) to be a linear function. In Fig. 4, the
estimated pairs of link functions are plotted against the approach-specific single-index α⊤X , obtained from applying the
two SIMML approaches and the linear GEM approach. From Figs. 3 and 4, it appears that the index α⊤X exhibits a stronger
moderating effect of treatment than the individual covariates. Also, the shapes of the regression curves from the SIMML
approaches appear to capture a nonlinear treatment-by-index interaction effect, especially due to some non-monotone
relationship between the index and the outcome in the active drug group.

In Fig. 5, we illustrate the single-index coefficient estimates from each of the methods, and the associated 95%
confidence intervals obtained from a bias-corrected and accelerated (BCa, DiCiccio and Efron, 1996) bootstrap with 500
replications. The coverage of the asymptotic-based confidence intervals for this sample size is not expected to be very good
(based on the simulation results in Section 5.2) and thus instead we used bootstrap confidence intervals. The magnitude
of the estimated coefficients α1, . . . , α9 reflects the relative importance of the covariates x1, . . . , x9 in determining a
composite treatment effect modifier α⊤X .
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Fig. 4. Depression randomized clinical trial: Pair of estimated link functions (g1 and g2) obtained from SIMML with the ‘‘main effect adjusted’’ profile
likelihood (first panel), SIMML with the (main effect un-adjusted) profile likelihood (second panel), and the linear GEM model estimated under the
criterion maximizing the difference in the linear regression slopes (third panel), respectively, for the placebo group (blue solid curves) and the active
drug group (red dotted curves). The 95% confidence bands were constructed conditioning on the single-index coefficient α. For each treatment group,
the observed outcomes are plotted against the estimated single-index.

Fig. 5. Depression randomized clinical trial: Top panel: Violin plots of the estimated values of treatment decision rules based on each of the individual
covariates x1, . . . , x9 , determined from univariate nonparametric and linear regressions, respectively, obtained from 500 randomly split testing sets
(with higher values preferred). Bottom panel: The estimated index coefficients α1, . . . , α9 , associated with the covariates x1, . . . , x9 , and the 95%
confidence intervals for each of the three methods, obtained from BCa bootstrap with 500 replications. An estimated significant coefficient is marked
with ∗ on top of each confidence interval.

In this analysis, the incorporation of the ‘‘main effect’’ component improved the value of treatment decision rules
determined from the proposed SIMML method, as illustrated in the boxplots in Fig. 6; we compared the two SIMML
approaches (SIMML* and SIMML); the linear GEM (linGEM) and the two approaches based on separate regression models
for each treatment group (K -Index and K -LR), with respect to the estimated values (14) of the treatment decision rules.
For comparison, we also included the decision to treat everyone with placebo (All PBO), and the decision to treat everyone
with the active drug (All DRG). The results are summarized in Fig. 6.

In Fig. 6, in terms of the averaged estimated values (14) estimated from the aforementioned 500 randomly split testing
sets, the proposed SIMML approaches outperform all other methods. The visualization (see Fig. 4) indicates that the
superiority of the active drug over placebo does not linearly decrease with the index, but rather, it appears to remain
relatively constant to the left of the crossing point, exhibiting some nonlinear patterns. Finally, we note that the value of
the treatment decision rule All PBO was lower than the value of the treatment decision rule All DRG, and that all treatment
decision rules that took patient characteristics into account outperformed the decision of treating everyone with the drug
(which is standard current clinical practice). In particular, the superiority the treatment decision rule SIMML* over treating
everyone with the drug in terms of value was of similar magnitude of the superiority of the decision to treat everyone with
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Fig. 6. Depression randomized clinical trial: Boxplots of the estimated values of treatment decision rules, obtained from the 500 randomly split
testing sets (higher values are preferred). The estimated values (and the standard deviations) are given as follow. SIMML*: 9.34 (2.68); SIMML: 8.72
(2.68); K-Index: 8.04 (2.69); K-LR: 8.36 (2.69); linear GEM (linGEM): 8.22 (2.67); All placebo (PBO): 6.17 (2.63); All drug (DRG): 7.57 (2.67).

the drug versus treating everyone with placebo. This is a clear indication that patient characteristics can help treatment
decisions for patients with depression, and the more flexible SIMML methods are well suited for developing treatment
decision rules. Particularly, the proposed methods show that combining patient characteristics with little moderating
effects of a treatment can result in a strong treatment effect modifier which exhibits nonlinear association with the
outcome that can help with making treatment decisions.

7. Discussion

The SIMML model (6) can be extended in various ways, for example, by allowing treatment-specific noise variances σ 2
t .

Under a Gaussian noise assumption, the B-spline approximated profile log likelihood of α, that profiles out the nuisance
parameters σ 2

t and ηt , up to constants, is
∑K

t=1 nt logQt (α), in which Qt (α) = ∥Y t −Sα,tY t∥
2/nt . The corresponding profile

estimator of α is argmin
α∈Θ

∑K
t=1 nt logQt (α). The estimation can be performed similarly as in the estimation of α̂ in (8), but

the criterion function Q (α) will be replaced by
∑K

t=1 nt logQt (α).
The SIMML can also be extended to generalized linear models (GLM) in which the outcome variable is a member

of the exponential family. The standard form of the density is fY (Y ; θ, φ) = exp {(Yθ − b(θ )) /a(φ) + c(Y , φ)}, with a
canonical link function h(·). We can extend the SIMML approach to the GLM setting with treatment-specific natural
parameters θt , t ∈ {1, . . . , K } by modeling the treatment-specific outcomes as a function of a single-index α⊤X:
θt (x) = h−1 (E (Y | T = t, X = x)) = gt (α⊤x), t ∈ {1, . . . , K }; gt (·), hence θt (x) ∈ R, can be approximated, for example, by
B-splines. The approximates can be denoted by θ̃t (x) = η⊤

t Zt (α
⊤x) for some ηt ∈ Rdt . As in Section 3, the general strategy

of nonlinear maximization of the ‘‘profile’’ likelihood over α ∈ Θ , where we profile out ηt for each value of α, can be
employed. The dispersion parameter φ can also be profiled out. Other potential extensions involve incorporating variable
selection in high-dimensional covariate settings using a regularization method and incorporating functional-valued data
objects (such as images) as patient covariates.

An important extension to the SIMML model is to factor out baseline effects common to all treatment groups, by
allowing an unspecified main-effect term µ(X) (e.g., Tian et al., 2014) in the model. Generally, this can be handled by an
‘‘orthogonalization’’ approach, and the estimation can be performed under the framework of A-learning (Murphy, 2003;
Lu et al., 2011; Shi et al., 2016, 2018; Jeng et al., 2018). To elaborate, consider the following extension of model (2),

E (Y | T = t, X = x) = µ(x) + gt (α⊤x) (t = 1, . . . , K ), (15)

where we impose a structural constraint, ET
(
gT (α⊤X) | X

)
=

∑K
t=1 πtgt (α⊤X) = 0, which is a sufficient condition

for orthogonality between the SIMML, gT (α⊤X), and the unspecified main effect, µ(X) in (15), as in Jeng et al. (2018).
Optimization of model (15) can be achieved by constrained least squares under this orthogonality constraint and
A-learning can be employed for estimating an optimal treatment decision rule, focusing on estimating the interactions in
the presence of the unspecified main effect µ(X). The technicalities of this adjustment are treated in a separate work.
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Appendix A. The asymptotic covariance matrix in Theorem 2

Define Rt (α) = EY ,X |T=t
(
Y − gt (α⊤X)

)2, t ∈ {1, . . . , K }. In Theorem 2, the asymptotic covariance matrix is given as
Σα0,−p = H−1

α0,−p
W α0,−pH

−1
α0,−p

. Here, the Hessian matrix Hα0,−p =
[
Hj,q

]p−1
j,q=1 evaluated at α−p = α0,−p has its (j, q)th

element given by

Hj,q =

K∑
t=1

πt

[
∂2

∂αj∂αq
Rt (α) −

αj

αp

∂2

∂αp∂αq
Rt (α) −

αq

αp

∂2

∂αp∂αj
Rt (α)

−
αjαq

α3
p

∂

∂αp
Rt (α) +

αjαq

α2
p

∂2

∂α2
p
Rt (α)

]⏐⏐⏐⏐
α=α0

. (A.1)

The matrix W α0,−p =
[
Wj,q

]p−1
j,q=1 evaluated at α−p = α0,−p has its (j, q)th element given by

Wj,q =

K∑
t=1

πtEY ,X |T=t

({
2 (gt (uα) − Y )

(
∂

∂αj
gt (uα) −

αj

αp

∂

∂αp
gt (uα)

)
+

∂

∂αj
Rt (α) −

αj

αp

∂

∂αp
Rt (α)

}
×

{
2 (gt (uα) − Y )

(
∂

∂αq
gt (uα) −

αq

αp

∂

∂αp
gt (uα)

)
+

∂

∂αq
Rt (α) −

αq

αp

∂

∂αp
Rt (α)

})⏐⏐⏐⏐
α=α0

(A.2)

where uα = α⊤X .

Appendix B. Proof

B.1. Proof of Theorem 1

Proof. Let us write Qt (α) = ∥Y t − Sα,tY t∥
2/nt and Q (α) =

∑K
t=1 ntQt (α)/n. Under Assumptions 2–4, by the results from

A.14 of Wang and Yang (2007), we have

sup
α∈Θc

|Qt (α) − Rt (α)| ≤ O((n−1/2
t h−1/2

t log nt )2 + (h4
t )

2)

+ O(n−1/2
t log nth

−1/2
t + h4)

almost surely, where ht =
1

Nt+1 is the distance between knot points, and Nt (note, Nt = dt − 4) is the number of interior
knots on [0, 1]. Since we choose Nt such that n1/6

t ≪ Nt ≪ n1/5
t (log(nt ))−(2/5) for all t ∈ {1, . . . , K }, under Assumption 5,

sup
α∈Θc

|Qt (α) − Rt (α)| → 0 t ∈ {1, . . . , K },

almost surely. By the continuous mapping theorem,

sup
α∈Θc

⏐⏐⏐⏐⏐
K∑

t=1

nt

n
Qt (α) −

K∑
t=1

πtRt (α)

⏐⏐⏐⏐⏐ ≤ sup
α∈Θc

K∑
t=1

⏐⏐⏐nt

n
Qt (α) − πtRt (α)

⏐⏐⏐ → 0

almost surely, therefore, we have

sup
α∈Θc

|Q (α) − R(α)| → 0, (B.1)

almost surely. Denote by (Ω,F,P) the probability space on which all {Yi, Ti, X⊤

i }
∞

i=1 are defined. By (B.1), for any
δ > 0, ω ∈ Ω , there is an integer n∗(ω), such that Q (α0, ω) − R(α0) < δ/2, whenever n > n∗(ω). Since α̂(ω)
is the minimizer of Q (α, ω), we have Q (α̂(ω), ω) − R(α0) < δ/2. Also, by (B.1), there exists an integer n∗∗(ω), such
that R(α̂(ω), ω) − Q (α̂(ω), ω) < δ/2, whenever n > n∗∗(ω). Therefore, whenever n > max(n∗(ω), n∗∗(ω)), we have
R(α̂(ω), ω) − R(α0) < δ. The strong consistency α̂ → α0 follows from the local convexity of Assumption 1. □

B.2. Proof of Theorem 2

Proof. We first derive the expression (A.1) from the Appendix for the Hessian matrix. We can write R(α−p) =∑K
t=1 πtRt (α−p), where the ‘‘pth component removed’’ function corresponding to the tth treatment is Rt (α−p) =

Rt

(
α1, . . . , αp−1,

√
1 − (α2

1 + · · · + α2
p−1)

)
. Applying the chain rule for taking the derivative of Rt (α−p) with respect to

αj, we obtain

∂

∂αj
Rt (α−p) =

∂

∂αj
Rt (α) −

αj

αp

∂

∂αp
Rt (α) (B.2)
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for each j ∈ {1, . . . , p − 1}. Taking another derivative of (B.2) with respect to αq, for each q ∈ {1, . . . , p − 1}, again by
applications of the chain rule,

∂2

∂αq∂αj
Rt (α−p) =

∂2

∂αq∂αj
Rt (α) −

αq

αp

∂2

∂αp∂αj
Rt (α) −

αj

αp

∂2

∂αq∂αp
Rt (α)

−
∂

∂αq

(
αj

αp

)
∂

∂αp
Rt (α) +

αqαj

α2
p

∂2

∂αp∂αp
Rt (α). (B.3)

After summing (B.3) over the groups t ∈ {1, . . . , K }, weighted by the group probabilities π1, . . . , πK , evaluated at α = α0,
we obtain (A.1).

Next, we examine the asymptotics of the profile estimator α̂. From A.15 of Wang and Yang (2007) and under
Assumptions 2–5, we have

sup
α∈Θc

sup
1≤j≤p

⏐⏐⏐⏐⏐ ∂

∂αj

{
Qt (α) − Rt (α)

}
−

1
nt

nt∑
i=1

ξα,i,j,t

⏐⏐⏐⏐⏐ = o
(
n−1/2
t

)
(B.4)

almost surely, with ξα,i,j,t = 2{gt (uα,ti) − Yti}
∂

∂αj
gt (uα,ti) −

∂
∂αj

Rt (α), where uα,ti = α⊤Xti, and furthermore

sup
α∈Θc

sup
1≤j≤p

⏐⏐⏐⏐ ∂

∂αj

{
Qt (α) − Rt (α)

}⏐⏐⏐⏐ = o(1),

sup
α∈Θc

sup
1≤q,j≤p

⏐⏐⏐⏐ ∂2

∂αq∂αj
{Qt (α) − Rt (α)}

⏐⏐⏐⏐ = o(1),
(B.5)

almost surely, for each group t ∈ {1, . . . , K }.
Now, we will prove that the estimated score of Q (α−p) =

∑K
t=1 π̂tQt (α−p), where π̂t =

∑n
i=1 I(Ti = t)/n, evaluated

at α−p = α0,−p, is represented up to o(n−1/2) almost surely, by a sum of mean-zero independent random variables,
which we denote by ηi ∈ Rp−1, i ∈ {1, . . . , n}, where n =

∑K
t=1 nt . Let us denote the estimated score function by

Ψ̂ (α−p) =
∂

∂α⊤
−p

Q (α−p), where α−p ∈ Rp−1. We will show

sup
1≤j≤p−1

⏐⏐⏐⏐⏐Ψ̂j(α0,−p) −
1
n

n∑
i=1

ηi,j

⏐⏐⏐⏐⏐ = o(n−1/2), (B.6)

almost surely, where Ψ̂j(α−p) ∈ R is the jth component of the score function Ψ̂ (α−p) and ηi,j ∈ R is the jth component
of the random variable ηi. In order to employ the result (B.4), we first consider the score function defined on the set Θc ,
i.e., the score function Ψ̂j(α), instead of the ‘‘pth component removed’’ score function defined on Rp−1, i.e., Ψ̂j(α−p). We will
show that, for some mean-zero independent random variables, which we denote by ξ ∗

α,i,j, i ∈ {1, . . . , n}, j ∈ {1, . . . , p},

sup
α∈Θc

sup
1≤j≤p

⏐⏐⏐⏐⏐ ∂

∂αj
{Q (α) − R(α)} −

1
n

n∑
i=1

ξ ∗

α,i,j

⏐⏐⏐⏐⏐ = o(n−1/2) (B.7)

is satisfied almost surely. Let us set the desired mean-zero independent random variable ξ ∗

α,i,j to be ξ ∗

α,i,j =
∑K

t=1 ξ ∗

α,i,j,t ,
where

ξ ∗

α,i,j,t =

[
2{gt (α⊤Xi) − Yi}

∂

∂αj
gt (α⊤Xi) −

∂

∂αj
Rt (α)

]
I(Ti = t),

which must satisfy the following:

sup
α∈Θc

sup
1≤j≤p

⏐⏐⏐⏐ K∑
t=1

πt

[
∂

∂αj
Qt (α) −

∂

∂αj
Rt (α)

]
−

1
n

n∑
i=1

K∑
t=1

ξ ∗

α,i,j,t

⏐⏐⏐⏐ = o(n−1/2). (B.8)

We can write⏐⏐⏐⏐⏐
K∑

t=1

πt

[
∂

∂αj
Qt (α) −

∂

∂αj
Rt (α)

]
−

1
n

K∑
t=1

n∑
i=1

ξ ∗

α,i,j,t

⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐
K∑

t=1

πt

[
∂

∂αj
Qt (α) −

∂

∂αj
Rt (α) −

1
πt

nt

n
1
nt

nt∑
i=1

ξα,i,j,t

]⏐⏐⏐⏐⏐ ,
where ξα,i,j,t is defined in (B.4). Therefore, applying the continuous mapping theorem and Slutsky’s theorem to (B.4) leads
to the desired result (B.8).
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Next, we will show (B.6), the result corresponding to the ‘‘pth component removed’’ estimated score function, Ψ̂ (α−p)
on Rp−1. Considering the linear operator ∂

∂αj
−

αj
αp

∂
∂αp

, we note that by the chain rule,(
∂

∂αj
−

αj

αp

∂

∂αp

)
{Q (α) − Q (α)} = Ψ̂j(α−p) − Ψj(α−p),

for j ∈ {1, . . . , p − 1}, where Ψj(α−p) denotes the jth component of the gradient of R(α−p). If we set the approximation
variable ηi,j of (B.6) to be

ηi,j = ξ ∗

α,i,j −
αj

αp
ξ ∗

α,i,p

=

K∑
t=1

[
2{gt (α⊤Xi) − Yi}

{
∂

∂αj
gt (α⊤Xi) −

αj

αp

∂

∂αp
gt (α⊤Xi)

}
+

∂

∂αj
Rt (α) −

αj

αp

∂

∂αp
Rt (α)

]
I(Ti = t),

(B.9)

then we can show

sup
α∈Θc

sup
1≤j≤p−1

⏐⏐⏐⏐⏐
(

∂

∂αj
−

αj

αp

∂

∂αp

)
{Q (α) − R(α)} −

1
n

n∑
i=1

ηi,j

⏐⏐⏐⏐⏐
≤ sup

α∈Θc

sup
1≤j≤p−1

⏐⏐⏐⏐⏐ ∂

∂αj

(
Q (α) − R(α)

)
−

1
n

n∑
i=1

ξ ∗

α,i,j

⏐⏐⏐⏐⏐
+ sup

α∈Θc

αj

αp

⏐⏐⏐⏐⏐ ∂

∂αp

(
Q (α) − R(α)

)
−

1
n

n∑
i=1

ξ ∗

α,i,p

⏐⏐⏐⏐⏐ = o(n−1/2),

(B.10)

by the triangle inequality and the result of (B.7). Since Ψj(α−p) is evaluated at the minimum α0,−p, we have

Ψj(α0,−p) =

(
∂

∂αj
−

αj

αp

∂

∂αp

)
{Q (α)}

⏐⏐⏐⏐
α=α0

= 0, (B.11)

by the local convexity under Assumption 1. Then we obtain the desired result of (B.6), by (B.10) and (B.11).
The uniform consistency of the observed Hessian, Ĥ(α) =

∂2

∂α−p∂α⊤
−p

Q (α−p), to the population Hessian H(α−p) of (A.1)
follows directly from the results of (B.5) under Assumptions 2–5, with applications of the continuous mapping theorem.

Finally, we prove the main result. Consider the random variable Ψ̂j(α0,−p) introduced in (B.6), and the following
parametrization: for each component j ∈ {1, . . . , p − 1}

fj(s) = Ψ̂j
(
sα̂−p + (1 − s)α0,−p

)
, s ∈ [0, 1].

Taking the derivative with respect to t , we have by the chain rule

d
dt

fj(s) =

p−1∑
m=1

∂

∂αm
Ψ̂j

(
sα̂−p + (1 − s)α0,−p

)(
α̂m − α0,m

)
.

Since Ψ̂j(α̂−p) = 0 by the definition of α̂−p, it follows that fj(1) − fj(0) = Ψ̂j(α̂−p) − Ψ̂j(α0,−p) = −Ψ̂j(α0,−p). Therefore, for
any particular j = 1, . . . , p − 1, there exists s∗j ∈ [0, 1] by the mean value theorem, such that

−Ψ̂j(α0,−p) =

[
∂

∂α1
Ψ̂j

(
s∗j α̂−p + (1 − s∗j )α0,−p

)
,

. . . ,
∂

∂αp−1
Ψ̂j

(
s∗j α̂−p + (1 − s∗j )α0,−p

)][
α̂−p − α0,−p

]
,

which is just[
∂2

∂α1∂αj
Q̂

(
s∗j α̂−p + (1 − s∗j )α0,−p

)
,

. . . ,
∂2

∂αp−1∂αj
Q̂

(
s∗j α̂−p + (1 − s∗j )α0,−p

)][
α̂−p − α0,−p

]
, (B.12)
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Table C.2
The proportion of time (‘‘Coverage’’) that the asymptotic 95% confidence interval contains the true value of αj , j ∈ {1, . . . , 5}, for varying ω ∈ {0, 0.5, 1},
corresponding to linear, moderately nonlinear, and highly nonlinear contrasts, respectively, with varying n (= n1 + n2 , where n1 = n2).
n ω = 0 (linear) ω = 0.5 (moderate nonlinear) ω = 1 (highly nonlinear)

α1 α2 α3 α4 α5 α1 α2 α3 α4 α5 α1 α2 α3 α4 α5

50 0.36 0.45 0.43 0.44 0.42 0.49 0.46 0.45 0.46 0.40 0.59 0.58 0.57 0.55 0.52
100 0.64 0.67 0.72 0.68 0.64 0.76 0.75 0.80 0.72 0.76 0.89 0.82 0.84 0.75 0.73
200 0.77 0.77 0.79 0.78 0.73 0.88 0.83 0.82 0.85 0.79 0.92 0.88 0.84 0.78 0.81
400 0.85 0.90 0.87 0.87 0.85 0.88 0.88 0.88 0.82 0.85 0.95 0.88 0.84 0.79 0.78
800 0.95 0.92 0.91 0.89 0.88 0.92 0.89 0.92 0.89 0.87 0.92 0.91 0.83 0.78 0.81
1600 0.93 0.93 0.92 0.93 0.92 0.94 0.94 0.91 0.93 0.91 0.93 0.90 0.87 0.84 0.81
3200 0.94 0.95 0.94 0.94 0.94 0.96 0.94 0.90 0.92 0.90 0.93 0.92 0.87 0.90 0.85

where
[
α̂−p − α0,−p

]
is a p − 1 dimensional random vector. Writing (B.12) in matrix notation, we have

− Ψ̂ (α0,−p) =

[
∂2

∂αq∂αj
Q̂

(
s∗j α̂−p + (1 − s∗j )α0,−p

)]p−1

j,q=1

[
α̂−p − α0,−p

]
. (B.13)

Then, by (B.13) one can write

√
n(α̂−p − α0,−p) = −

{[
∂2

∂αq∂αj
Q̂

(
s∗j α̂−p + (1 − s∗j )α0,−p

)]p−1

j,q=1

}−1
√
nΨ̂ (α0,−p). (B.14)

Meanwhile, by (B.6), for each component j ∈ {1, . . . , p − 1} of Ψ̂ (α0,−p), we can write

Ψ̂j(α0,−p) =
1
n

n∑
i=1

ηi,j + o(n−1/2), (B.15)

almost surely with E(ηi,j) = 0. The variance–covariance matrix of the random vector ηi =
[
ηi,1, . . . , ηi,p−1

]⊤
∈ Rp−1

evaluated at α−p = α0,−p, where ηi,j are specified in (B.9), is given in (A.2), where it is denoted by W α0,−p . From (B.15),
the central limit theorem ensures that

√
nΨ̂ (α0,−p) → N (0,W α0,−p ) in distribution. Now, by the representation of (B.14)

together with an application of Slutsky’s theorem on the observed Hessian, we obtain
√
n(α̂0,−p − α0,−p) → N (0,Σα0,−p )

in distribution, where Σα0,−p = H−1
α0,−p

W α0,−pH
−1
α0,−p

, which is the desired result of Theorem 2. □

Appendix C. Table for Section 5.2 coverage probability of asymptotic 95% confidence intervals

See Table C.2.
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